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Abstract

We investigated the effects of hyperbaric oxygen (HBO) treatment on striated muscle tissue in healthy rats. The treatment group of
rats (n = 16) was given HBO daily on weekdays for 2 h over a 4-week period while a control group (n = 8) was not treated. Tissue sam-
ples were taken from the left and right vastus lateralis before and after the HBO treatment period, respectively, for all rats in both groups.
Levels of adenosine monophosphate (AMP), adenosine diphosphate, andenosine triphosphate (ATP) and xanthine oxidase in the muscle
tissue were determined. HBO treatment caused a statistically significant increase in ATP (p = 0.001) and decrease in AMP (p = 0.02) in
the HBO-treated group, while there were no significant differences in metabolites in the control group. These results suggest that HBO
treatment induces an increase in the ATP levels of muscle tissue with normal mitochondria. Thus, HBO might have some beneficial
effects in the treatment of heteroplasmic mitochondrial disease, where normal and defective mitochondria coexist.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Mitochondrial disease is typically caused by genetic de-
fects, which usually affect the function of the electron trans-
port chain (ETC).1 The basic pathogenetic feature in these
disorders is insufficient andenosine triphosphate (ATP)
production.2 Determinations of serum lactate and pyruvate
levels, study of muscle histology and enzymology, and ge-
netic and exercise tests have been employed for the diagno-
sis of this group of diseases.1 Antioxidants (vitamin E,
alpha-lipoic acid), electron donors and acceptors (coen-

zyme Q10, riboflavin), alternative energy sources (creatine
monohydrate), lactate decreasing strategies (dichloroace-
tate) and genetic therapy strategies have all been trialled
as components of therapeutic programs to ameliorate the
clinical symptoms of mitochondrial diseases1 but no cura-
tive treatment has yet been established.3

Hyperbaric oxygen (HBO) therapy is achieved by
exposing the patient to a barometric pressure higher than
the ambient pressure, while he or she breathes 100% oxy-
gen. There is evidence that HBO may increase tissue ATP
levels in some pathological conditions.4–7 The therapeutic
potential of HBO for the treatment of mitochondrial dis-
ease is not well understood, and to date HBO has not
been used either routinely or experimentally as a treatment
modality.
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HBO-induced increases in ATP levels would not be ex-
pected in tissues from subjects with homoplasmic mito-
chondrial disease, where all mitochondria are defective.
However, both normal and defective mitochondria are
known to be present in patients with heteroplasmic mito-
chondrial disease.8 In the present study we investigated
the effect of HBO treatment on adenosine monophosphate
(AMP), adenosine diphosphate (ADP), ATP and xanthine
oxidase (XO) levels in striated muscle tissue from healthy
rats, in which the muscle is expected to have normal
(wild-type) mitochondria.

2. Materials and methods

Hyperbaric oxygen was administered to 16 healthy male
Sprague-Dawley rats for 4 weeks at 3 atm absolute
pressure, for 2 h every day on weekdays, while a control
group of eight rats did not receive HBO. In both groups
of animals, tissue samples were taken from the left vastus
lateralis muscle before the study period commenced. After
the HBO administration was complete, another biopsy was
taken from the right vastus lateralis muscle from each ani-
mal. In the group that did not undergo HBO treatment, the
second biopsy was performed 1 month after the first. All
tissue samples were frozen in liquid nitrogen and stored
at –80 �C for pathologic evaluation and biochemical
analyses. The frozen tissue samples were cut into 8 lm-
thick sections, which were then histochemically stained
for evaluation of succinic dehydrogenase (SDH) activity.
ATP, ADP and AMP levels were measured by high-perfor-
mance liquid chromatography (HPLC). XO activity was
measured spectrophotometrically. ATP, ADP and AMP
for standard solutions were obtained from Sigma (St.
Louis, MO, USA), H3PO4, KH2PO4 and K2HPO4 were
purchased from Merck (Darmstadt, Germany). All organic
solvents were of HPLC grade. The cellular energy charge
was calculated as ([ATP] + 0.5[ADP])/([ATP] + [ADP] +
[AMP]). Tissue SDH activity, levels of XO, ATP, AMP
and ADP, and cellular energy charge were compared for
tissues taken before and after HBO administration.

2.1. AMP, ADP and ATP measurement

Measurements were performed according to the meth-
ods described by Çimen et al.9 Skeletal muscle tissue sam-
ples (100 mg) were homogenized in 0.6 N perchloric acid
and placed on ice for 1 h. After neutralization with 1 M
of K2HPO4, samples were centrifuged at 10 000 g for
15 min at 4 �C. The supernatant was filtered through a
0.2 lm syringe filter. ATP, ADP, and AMP levels were
measured by HPLC (HP 1050; Hewlett Packard, Wald-
bronn, Germany) using a 4.6 � 250 mm (Allosphere
ODS-2, C18, 5 lm; Alltech Industries, Nicholasville, KY,
USA) reversed-phase column, a mobile phase of 160 mM
KH2PO4 with 100 mM KCl at pH 6.5 running 1 mL/min
isocratically and with detection on a diode array set at
254 nm. ATP, ADP and AMP peaks were identified from

their retention times and confirmed by ‘spiking’ with added
exogenous ATP, ADP and AMP. Concentrations of ATP,
ADP and AMP were calculated from a standard curve and
are expressed as lmol/g tissue.

2.2. Xanthine oxidase activity

Xanthine oxidase activity was measured as described by
Prajda et al.10 Fifty-milligram skeletal muscle tissue sam-
ples were homogenized in 0.25 M sucrose. The homogenate
was centrifuged at 100 000 g for 30 min at 3 �C in an ultra-
centrifuge (Sorvall Combi Plus; Sorvall Centrifuges, Wil-
mington, DE, USA). The supernatant was incubated for
40 min at 37 �C. After incubation, 3 mL of reaction mix-
ture (33 mM phosphate buffer and 0.17 mM xanthine)
was added to 50 lL supernatant. The reaction was carried
out at 37 �C. Reactions were stopped at 0 and 20 min by
addition of 0.1 mL of 100% trichloroacetic acid. The mix-
ture was centrifuged at 10 000 g for 15 min to remove pre-
cipitable material. In the clear supernatants the uric acid
produced from the xanthine was measured as the increase
in absorbance at 293 nm using a spectrophotometer
(UV240; Shimadzu, Kyoto, Japan). Blanks contained an
identical reaction mixture without xanthine. Enzyme activ-
ity was calculated as the difference between the rate in the
complete reaction and that in the blank. XO activity is pre-
sented as nmol/mL uric acid produced per min of wet
tissue.

2.3. Statistical analyses

Results are expressed as mean ± SD. The differences
between groups were tested for significance using the
Wilcoxon signed rank test. Differences were considered sig-
nificant at p < 0.05. All statistical analyses were performed
by using SPSS 10.0 for Windows (SPSS, Chicago, IL,
USA).

3. Results

In the treatment group prior to the period of administra-
tion of HBO, the mean values of tissue XO, ATP, ADP
and AMP levels and cellular energy charge were 1.55
nmol/mL/mg, 0.78 lmol/g, 44.22 lmol/g, 20.49 lmol/g
and 0.35, respectively (Table 1). After HBO administration
was completed, tissue XO, ATP and ADP levels and cellu-
lar energy charge had increased to 2.20 nmol/mL/mg, 2.23
lmol/g, 45.50 lmol/g and 0.41, respectively, while the
mean AMP level had decreased to 13.19 lmol/g (Table
1). The changes in XO (p = 0.006) and ATP (p = 0.001) le-
vel and in cellular energy charge (p = 0.002) were statisti-
cally significant. The decrease in AMP level was also
statistically significant (p = 0.02). There was no significant
difference between the ADP level (p = 0.0605) before and
after HBO administration (Table 1).

In the control group, the mean levels of ATP, ADP and
AMP in the biopsied muscle tissue before HBO administra-
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tion were 0.73 lmol/g, 48.82 lmol/g, and 16.48 lmol/g,
respectively. In the samples taken 1 month later, mean
ATP, ADP and AMP levels were 0.70 lmol/g, 48.78
lmol/g and 13.69 lmol/g, respectively (Table 2). There
were no significant differences between ATP (p = 0.574),
ADP (p = 0.889) and AMP (p = 0.093) levels. There were
no differences in tissue SDH activity between the two
groups (Fig. 1).

4. Discussion

Mitochondrial diseases are caused by certain defects of
mitochondrial (mtDNA) or nuclear DNA, which usually

affect the function of the electron transport chain (ETC).1

Normally, all cells have numerous mtDNA molecules and
the mtDNA molecules are identical, which is described as
homoplasmy.8 Mitochondria are typically passed to indi-
viduals through their mothers through the ovum. When
mutations occur in some mitochondria, the defective
mtDNA molecules are passed to the next generations along
with normal mitochondria, with random inheritance. Thus,
in some mitochondrial diseases, both healthy and defective
mitochondria coexist in the same tissue, a condition de-
scribed as heteroplasmy.8

The major manifestation of mitochondrial diseases is
insufficient ATP production.3 It would not be expected that

Table 2

ATP, ADP and AMP levels in muscle tissue samples taken 1 month apart in the control group

Subject ATP (lmol/g) ADP (lmol/g) AMP (lmol/g)

First biopsy Second biopsy First biopsy Second biopsy First biopsy Second biopsy

1 0.88 0.80 44.14 46.47 19.54 12.34

2 0.81 0.84 42.16 46.76 10.45 13.22

3 0.77 0.59 56.43 54.16 16.54 13.84

4 0.75 0.69 52.56 50.64 18.72 14.68

5 0.66 0.68 47.24 45.57 19.29 11.12

6 0.59 0.64 51.79 58.26 17.55 13.86

7 0.84 0.83 53.69 44.54 21.12 20.34

8 0.56 0.58 42.61 43.83 86.40 10.12

Mean ± SD 0.73 ± 0.2 0.70 ± 0.1 48.82 ± 5.14 48.78 ± 4.80 16.48 ± 4.22 13.69 ± 2.88

p 0.574 0.889 0.093

ATP, adenosine triphosphate; ADP, adenosine diphosphate; AMP, adenosine monophosphate.

Table 1

Xanthine oxidase, ATP, ADP and AMP levels, and cellular energy charge before and after HBO administration

Subject Xanthine oxidase

(nmol/mL/mg)

ATP

(lmol/g)

ADP

(lmol/g)

AMP

(lmol/g)

Cellular energy charge

Before

HBO

After

HBO

Before

HBO

After

HBO

Before

HBO

After

HBO

Before

HBO

After

HBO

Before

HBO

After

HBO

1 1.89 2.52 1.00 2.15 33.08 34.47 20.34 8.550 0.32 0.43

2 1.57 1.57 0.71 3.52 52.14 40.96 9.35 10.22 0.43 0.44

3 2.20 2.52 0.87 2.21 51.59 52.05 17.57 15.85 0.38 0.40

4 2.20 1.57 0.86 4.01 50.89 49.60 20.80 12.56 0.36 0.44

5 1.89 2.52 0.61 1.01 41.24 43.67 25.29 12.12 0.32 0.40

6 1.57 1.89 0.64 1.95 48.46 57.14 18.15 12.96 0.37 0.42

7 1.26 2.52 0.93 1.33 43.89 43.44 23.02 15.41 0.34 0.38

8 0.94 1.57 0.47 1.92 45.71 45.03 7.730 5.27 0.43 0.47

9 0.94 2.83 0.66 2.28 48.12 45.91 18.46 10.32 0.37 0.43

10 1.57 2.83 0.63 1.56 43.11 43.24 22.31 30.56 0.34 0.31

11 1.26 2.52 1.11 2.63 46.10 57.12 6.93 5.42 0.45 0.48

12 1.57 1.57 0.64 1.26 41.65 39.35 12.94 12.65 0.39 0.39

13 1.57 1.89 0.68 2.29 38.58 39.42 50.73 16.00 0.22 0.38

14 1.26 2.83 1.15 3.33 38.21 51.08 12.99 24.11 0.39 0.37

15 1.26 2.52 0.57 1.96 55.77 33.63 22.34 9.67 0.36 0.41

16 1.89 1.57 0.95 2.32 32.25 51.89 38.99 9.43 0.24 0.44

Mean ± SD 1.55 ± 0.3 2.20 ± 0.5 0.78 ± 0.2 2.23 ± 0.8 44.42 ± 6.7 45.50 ± 7.1 20.49 ± 11.2 13.19 ± 6.4 0.35 ± 0.06 0.41 ± 0.04

p 0.006* 0.001* 0.0605 0.020* 0.002*

ATP, adenosine triphosphate; ADP, adenosine diphosphate; AMP, adenosine monophosphate; HBO, hyperbaric oxygen.
* Significant at p < 0.05.
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therapeutic agents increase ATP production in tissues when
all mitochondria are defective. But it is well known that
both normal and defective mitochondria coexist in some
mitochondrial diseases especially caused by mtDNA
defects.8

In this study, we investigated the effects of HBO on ATP
levels in tissue with normal mitochondria. Potential thera-
peutic approaches for mitochondrial disease can be divided
into two categories: physiologic approaches (palliation,
surgery, stimulation of muscle regeneration, supplementa-
tion of oxidative phosphorylation components, mitigation
of ancillary toxicity, etc.); and genetic approaches (genetic
counselling, inhibition of mutant DNA replication, etc.).8

Patients who suffer from ptosis are treated by blepharo-
plasty,11 and the sideroblastic anaemia and exocrine pan-
creas dysfunction seen in Pearson’s syndrome may be
ameliorated by blood transfusion8 and digestive enzyme
replacement,12 respectively. A pacemaker might be helpful
in patients with the conduction defects seen in Kearns-
Sayre syndrome.13 Insulin or other anti-diabetic agents
would be necessary in patients with diabetes. Valproic acid
and carnitine are used in the treatment of epilepsy. Apart
from these treatments, there have been approaches that
promote the elimination of accumulated toxic substances
or the scavenging of free radicals.8 Genetic approaches
are considered optimal when the mitochondrial disease
arises from a genetic defect.3 However, no curative treat-
ment has been established for mitochondrial disease.3

HBO therapy involves exposing the subject to a baro-
metric pressure higher than the ambient pressure, while
he or she breathes 100% oxygen. HBO has been used to
treat many pathological conditions including diabetic foot
disease,14,15 chronic osteomyelitis,16 carbon monoxide
intoxication,17 radiation-induced tissue damage,18 acute
ischaemic stroke,19 fungal infections,20 malignant otitis
externa,21 necrotizing fasciitis,22 haemorrhagic cystitis
and sepsis. Many studies investigating the relationship
between ATP levels and HBO have been carried out in
various tissues. Some studies have clearly shown that
HBO induces increases in tissue ATP levels in some patho-
logical conditions.4–7,23–31 A few studies have addressed

other effects of HBO on striated muscle.32–34 All these stud-
ies have examined the effects of HBO under post-ischaemic
circumstances. The results of our present study show that
HBO increases ATP levels in tissues containing normal
mitochondria.

Hyperbaric oxygen increases the level of soluble oxygen
in the blood and affects cellular oxygen uptake.35 The level
of oxygen consumption is a good indicator of cellular en-
ergy metabolism.36 One of the possible mechanisms of
the effect of HBO may be increased cellular oxygen utiliza-
tion and forced mitochondrial ATP production. This may
also be related to the upregulation of mitochondrial en-
zyme complex activity. There have been few studies that
have investigated the relationship between mitochondrial
enzymes and HBO administration. Dave et al. found that
HBO treatment delays the onset of motor neuron disease
and upregulates mitochondrial enzyme complex activity
in mitochondria isolated from motor cortex and spinal
cord of wobbler mice.37 Citrate synthase activity is the
most reliable indicator for estimating mitochondrial mass
in any given tissue.36 In addition, nicotinamide adenine
dinucleotide tetrazolium reductase (NADH-TR) or SDH
staining can be used to reveal the distribution of mitochon-
dria.38 SDH is found only in mitochondria whereas NADH
is present to some extent in cytosol.38 In the present study,
mitochondrial distribution was revealed by SDH staining.
Another mechanism that could theoretically be responsible
for the increase in ATP is the proliferation of mitochon-
dria. However, we did not observe any differences in tissue
SDH activity between tissue samples (Fig. 1). Thus, it may
be concluded that HBO does not induce the proliferation
of mitochondria in muscle tissue.

The enzyme XO catalyzes the oxidation of hypoxan-
thine to xanthine. XO is the primary source of cellular free
radicals. Many studies have shown that application of
HBO causes increases in free radical production.39–42 Our
data agree with findings that HBO treatment increases tis-
sue free radical production as well as ATP levels. An over-
abundance of free radicals is believed to have a destructive
or degradative effect on biomolecules. However, in mito-
chondrial diseases, increased production of free radicals

Fig. 1. Succinic dehydrogenase (SDH) activity in striated muscle tissue before (A) and after (B) hyperbaric oxygen administration in Subject 1 (SDH,

�100).
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is also promoted by ATP deprivation.8 Thus, it is not
known whether the same effects would be seen in tissues
that contain both normal and defective mitochondria
together.

5. Conclusion

HBO treatment was found to increase cellular energy
charge and tissue ATP levels in striated muscle tissue from
healthy rats, which might be expected to have normal mito-
chondria. These results suggest that HBO treatment might
ameliorate heteroplasmic mitochondrial diseases by induc-
ing ATP production in normal mitochondria (even though
defective mitochondria fail to respond). Obviously this
hypothesis should be tested using rigorous experimental
and clinical studies.
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